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Abstract

Engineering trade study analyses demand consideration of performance, cost and
schedule impacts across the spectrum of alternative concepts and in direct reference to
product requirements. Prior to detailed design, requirements are too often ill-defined (only
“goals”) and prone to creep, extending well beyond the Systems Requirements Review.
Though lack of engineering design and definitive requirements inhibit the ability to perform
detailed cost analyses, affordability trades still comprise the foundation of these future
product decisions and must evolve in concert. This presentation excerpts results of the
recent NASA subsonic Engine Concept Study for an Advanced Single Aisle Transport to
demonstrate an affordability evaluation of performance characteristics and the subsequent
impacts on engine architecture decisions. Applying the Process Based Economic Analysis
Tool (PBEAT), development cost, production cost, as well as operation and support costs
were considered in a traditional weighted ranking of the following system-level figures of
merit: mission fuel burn, take-off noise, NOx emissions, and cruise speed. Weighting
factors were varied to ascertain the architecture ranking sensitivities to these performance
figures of merit with companion cost considerations. A more detailed examination of
supersonic variable cycle engine cost is also briefly presented, with observations and
recommendations for further refinements.
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Sample of Co-Variance Effect on Estimate Uncertainty & the
Impact on Conceptual Design Studies

► This numerical experiment using Latin Hypercube depicts the offsetting effect of
uncertainty for an increasing number of equally contributing submodels.

► These somewhat idealized results (statistically small sample, no bias in variance)
demonstrate the large benefit modest decomposition and decreasing benefit
afforded by the effort to create ever-increasing detailed submodels.
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PBEAT Application & Decision Analysis using NASA’s Subsonicy	 g
Engine Concept Study for an Advanced Single-Aisle Transport

► Engine configurations for a narrow body aircraft, similar to the Boeing B737 and
Airbus A320, were parametrically studied by NASA. The following nomenclature
identifies the engine configuration trade-space:

• Hi = High work LPC
• Lo = Lo work LPC
• DD = Direct-Drive front Fan
• G = Geared front Fan
• FPR13 thru FPR17 = Fan Pressure Ratio 1.3 thru 1.7
• FIXED = Fixed area fan nozzle
• VAN = Variable Area fan Nozzle
• Spiral-1 = OPR 32, Cruise Mach 0.80
• Spiral-2 = OPR 42, Cruise Mach 0.80
• Spiral-3 = OPR 42, Cruise Mach 0.72

► The resulting 48 mission-sized engine/aircraft configurations were used to explore
the cost-benefit of increased efficiency, reduced noise, and reduced emissions.

► PBEAT Benchmark systems (Boeing 747, 777, 737, 787) calibrated using
publically available data facilitated analogy estimating at the subsystem-level.
Like the Benchmarks, more than 40 PBEAT attribute parameters were used in
characterizing the trade space for each of the 17 subsystems.
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PBEAT Application & Decision Analysis using NASA’s Subsonicy	 g
Engine Concept Study for an Advanced Single-Aisle Transport

► Outputs from the conceptual design/analysis codes (NPSS/WATE++, FLOPS,
PDCYL) augmented by formulas for complexity drivers (detailed part count,
design replication, etc.) were used to perform cost estimates using the PBEAT
code.
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PBEAT Application & Decision Analysis using NASA’s Subsonicy	 g
Engine Concept Study for an Advanced Single-Aisle Transport

► The abbreviated table below shows aircraft performance characteristics (noise,
emissions, and flight time) and subsystem results of PBEAT cost analysis
aggregated to the system level.

► The cost results were later simplified by incorporating fuel usage and O&S cost
into a single metric and subsequently expressing development cost, average unit
production cost and O&S cost as a cost per flight hour.

NITROGEN
Emissions Block

Spiral	 Configuration Name AUPC Mass DEV O&S FUEL	 OXIDES
LTO Noise Time

EMISSIONS
S1	 HI DD FPR14 VAN $79,139,988 99,820 $3,329,688,170 $20,192 37,698	 198.9 10.3 254.3 7.65
S1	 HI DD FPR15 FIXED $52,985,977 82,688 $2,765,360,074 $13,379 33,612	 1	 167.3 9.6 259.4 7.64
S1	 HI DD FPR16 FIXED $44,787,136 77,690 $2,571,631,395 $11,245 33,162	 158.2 10.0 266.3 7.63
S1	 HI DD FPR17 FIXED $40,408,688 74,715 $2,454,768,426 $10,110 33,336	 150.0 10.7 270.2 7.62
S1	 HI G FPR13 VAN $69,951,437 95,537 $3,077,493,312 $17,908 35,711	 203.1 9.2 247.8 7.68
S1	 HI G FPR14 VAN $54,326,144 83,236 $2,736,556,304 $13,803 33,897	 176.4 9.7 254.2 7.63
S1	 HI G FPR15 FIXED $44,611,238 77,415 $2,540,250,822 $11,230 32,449	 160.8 9.3 259.0 7.64
S1	 HI G FPR16 FIXED $41,694,784 75,561 $2,476,114,434 $10,462 32,880	 156.9 9.9 266.0 7.63
S1	 LO DD FPR14 VAN $72,767,228 96,859 $3,238,537,708 $18,546 36,352	 200.4 10.7 254.2 7.65
S1	 LO DD FPR15 FIXED $48,941,848 80,492 $2,670,278,851 $12,333 32,590	 176.0 9.7 259.3 7.64
S1	 LO DD FPR16 FIXED $42,074,616 75,927 $2,487,306,567 $10,542 32,247	 1	 168.7 10.1 266.1 7.63
S1	 LO DD F P R17 FIXED $39,140,849 73,964 $2,421,813,920 $9,777 32,606	 163.7 10.8 270.0 7.63
S1	 LO G F P R13 VAN $74, 755, 924 99,773 $3,222,159,921 $19,168 36,378	 219.0 9.7 248.2 7.68
S1	 LO G FPR14 VAN $57,082,817 85,386 $2,830,344,270 $14,524 34,116	 186.0 10.4 254.3 7.63
S1	 LO G FPR15 FIXED $46,698,738 78,986 $2,598,211,661 $11,774 32,516	 175.3 9.8 259.2 7.64
S1	 LO G FPR16 FIXED $44,073,241 77,379 $2,554,601,379 $11,075 32,931	 172.4 10.3 266.2 7.63
S2	 HI DD FPR14 VAN $83,604,650 101,475 $3,326,955,926 $21,366 36,351	 262.9 11.3 254.5 7.65
S2	 HI DD FPR15 FIXED $54 614 736 83 260 $2 789 563 819 $13 801 32 165	 220 4 10 4 259 8 7 64
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Spiral 1 COST/FLT-HR Spiral 2 COST/FLT-HR
$90,000 $90,000
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$55,000 Lo DD $55,000

$50,000
FRP1.3 FRP1.4	 FPR1.5	 FPR1.6	 FPR1.7

Hi DD $78,955 $65,843 $59,431 $56,835

Lo DD $78,463 $62,934 $58,925 $57,162

Lo G $75,155 $65,855 $60,433 $59,556

Hi G 1 $72,491 1 $64,291 $59,258 $57,584

Hi DD

Lo DD

- Lo G

Hi G

$50,000
FRP1.3 FRP1.4 FPR1.5 FPR1.6 FPR1.7

Hi DD $78,915 $65,245 $60,571 $57,764

Lo DD $76,657 $62,950 $58,556 $56,972

Lo G $76,324 $66,844 $61,230 $60,160

Hi G $72,864 $64,610 $59,840 $58,288

Lo G

Hi G

Spiral 3 COST/FLT-HR

$50,000
FRP1.3 FRP1.4	 FPR1.5	 FPR1.6	 FPR1.7

Hi DD $82,797 $68,858 $61,627 $59,151

Lo DD $75,725 $63,756 $59,274 $56,674

Lo G $71,889 $65,456 $60,641 $60,421

Hi G 1 $67,127 1 $62,186 $58,754 $57,314

$90,000
$85,000
$80,000
$75,000
$70,000
$65,000
$60,000
$55,000

Hi DD

Lo DD

- Lo G

Hi G

PBEAT Application & Decision Analysis using NASA’s Subsonicy	 g
Engine Concept Study for an Advanced Single-Aisle Transport

► The aircraft cost per flight hour provided a concise method for evaluating the
varied engine design configurations in this direct Cost/FoM decision approach.
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PBEAT Application & Decision Analysis using NASA’s Subsonic., :.	 y	 g
Engine Concept Study for an Advanced Single-Aisle Transport

► A second decision approach was investigated using surrogate FoM “utility curves”
and weighting criteria derived from the Analytic Hierarchy Process (AHP).

► The basis of cost benefit in this approach allows for consideration of variation in
value referred to as a Figure of Merit (FoM) utility score (worst within dataset = 0
%*weighting score, best within dataset = 100%*weighting score).

SPIRAL FPR CONFIG COST/FLT-HR EMISSIONS BLOCK TIME NOISE Final FoM
S1 FPR1.4 HI DD VAN 0.4% 12.5% 16.0% 26.5% 47.8%
S1 FPR1.5 HI DD FIXED 7.0% 21.8% 23.7% 27.1% 84.3%
S1 FPR1.6 HI DD FIXED 11.0% 24.5% 19.2% 27.7% 88.5%
S1 FPR1.7 HI DD FIXED 13.8% 26.8% 11.9% 28.3% 86.2%
S1 FPR1.3 HI G VAN 2.4% 12.2% 28.3% 24.7% 66.1%
S1 FPR1.4 HI G VAN 7.5% 19.0% 22.5% 27.7% 80.0%
S1 FPR1.5 HI G FIXED 11.7% 24.0% 27.2% 27.1% 100.0%
S1 FPR1.6 HI G FIXED 13.3% 24.9% 20.3% 27.7% 94.3%
S1 FPR1.4 LO DD VAN 0.9% 11.9% 11.9% 26.5% 41.5%
S1 FPR1.5 LO DD FIXED 8.9% 19.1% 22.5% 27.1% 81.4%
S1 FPR1.6 LO DD FIXED 13.0% 21.1% 18.1% 27.7% 84.8%
S1 FPR1.7 LO DD FIXED 14.7% 22.3% 10.9% 27.7% 78.2%
S1 FPR1.3 LO G VAN 1.0% 8.3% 22.5% 24.7% 49.5%
S1 FPR1.4 LO G VAN 5.9% 15.9% 14.9% 27.7% 61.3%
S1 FPR1.5 LO G FIXED 10.4% 19.3% 21.4% 27.1% 82.2%
S1 FPR1.6 LO G FIXED 11.4% 19.8% 16.0% 27.7% 77.3%
S2 FPR1.4 HI DD VAN 0.4% 0.5% 6.3% 26.5% 15.0%
S2 FPR1.5 HI DD FIXED 6.6% 7.6% 14.9% 27.1% 49.0%
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PBEAT Application & Decision Analysis using NASA’s Subsonicy	 g
Engine Concept Study for an Advanced Single-Aisle Transport

► The shape of each utility curve was derived from engineering judgment and
warrants further investigation as to it’s impact on the decision results.

► As related to cost, the first dollar of cost reduction is always easier to obtain that
the last dollar of cost reduction and as such might be considered as having less
value or utility.

► As related to noise, the utility curve concavity shows less benefit for “over
achieving” and also demonstrates the pitfalls of using combined FoMs (noise
certification is regulated at 3 prescribed points rather than the overall cumulative).
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PBEAT Application & Decision Analysis using NASA’s Subsonicy	 g
Engine Concept Study for an Advanced Single-Aisle Transport

►





►

12

Cost weighted @ 25%	 FoM
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 Cost weighted @15%
 Emission weighted @ 28.3%
 Block Time weighted @ 28.3%
 Noise weighted @ 28.3%

The trade space plotted – Illustrating the
Spiral 1 Hi G FPR15 configuration as the
highest rated.
With only slightly increased noise weighting,
lower FPR engines begin to rise in utility





PBEAT Application & Decision Analysis using NASA’s Subsonicy	 g
Engine Concept Study for an Advanced Single-Aisle Transport

Fo M Cost = 15%, Emissions = 28%, Block Time = 28%, & Noise = 28%
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 Cost weighted @ 50%
 Emission weighted @ 16.6%
 Block Time weighted @ 16.6%
 Noise weighted @ 16.6%

The trade space plotted – Illustrating the
Spiral 1 Hi G FPR16 configuration as the
highest rated.
With decreased noise weighting, higher
FPR engines show greater utility (due to
reduced ramp weight)





PBEAT Application & Decision Analysis using NASA’s Subsonicy	 g
Engine Concept Study for an Advanced Single-Aisle Transport

FoM Cost = 50%, Emissions = 17%, Block Time = 17%, & Noise = 17%
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•	 S3 Lo G 0.236 0.386 0.585 0.573
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PBEAT Application using ASA’s Engine Concept Stud for a 10-g	 g	 y
20 Passenger Supersonic Transport

► Performance studies are underway examining the impact of variable cycle engine
architecture for reconciling supersonic cruise performance with acoustically low
takeoff jet velocity.

► Using the same/similar tools as the previous subsonic example, a sparse pareto
frontier was assembled from performance results of two engine architectures

► For two of these engines meeting a desired jet velocity, engine cost estimates
were generated at a subcomponent/part-level using the same attributes formulae
derived for the previous subsonic example.
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PBEAT Application using ASA’s Engine Concept Stud for a 10-g	 g	 y
20 Passenger Supersonic Transport

► The sample results show the Average Unit Production Cost impact of two cost
complexity drivers from these subcomponent results which have been aggregated
to the component-level for comparison.

► Results indicate generally acceptable results in applying “subsonic” attribute
formulae to very different turbine engine architectures using PBEAT (though
Turbines, and Controls & Accessories warrant further discussion/investigation).

► Interrogation of subcomponent details highlights some areas requiring refinement,
such as manufacturing processes assumed for the cooled turbine components
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PBEAT Application using ASA’s Engine Concept Stud for a 10-
g	 g	 y

20 Passenger Supersonic Transport

► Refined formulae for variance (least, likely, most) on a subcomponent basis may
be required rather than uniform +/- 10%, impacting cumulative distribution.

► Controls & Accessories is too broad a category in NASA’s current conceptual
design (high part count overly inflates “off-the-shelf” items), though large amount
of electronics rightfully contributes to the high cost.

► Manufacturing processes need greater user specification using PBEAT (e.g.
Turbine et al processes should be tied to conceptual design code WATE++).
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PBEAT Application using ASA’s Engine Concept Stud for a 10-
g	 g	 y

20 Passenger Supersonic Transport

► The general ranking of Fan subcomponents costs are as expected.
► Fan containment, though a complex Kevlar material system, has excessive

production cost prompting more refined specification of manufacturing maturity in
the supplemental formulae.

► Similarly, highly variable components, such as the vanes, exhibit excessive
production cost and warrant investigation (corroborated by highly variable nozzle).
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Summary Observations

► No cost estimate is “right”, though some techniques are better than others. Cost
confidence and managing to cost are what matters most, and requires integration
with conceptual design tools where ~70% of cost-impacting decisions are made.

 Estimates aggregated from decompositions deeper than 2 or 3 levels below aren’t
worth the time and effort to create them (co-variance argument). Furthermore,
decompositions without some accompanying engineering for complexities (e.g.
TRL, manufacturing maturity, etc.) can confuse results and undermine cost
confidence (witness “Fan Containment” and “Controls & Accessories”).

Decision Analysis is not a robot optimizer. Robust, flexible solutions are better
than true optimums, especially during conceptual design phases of a program
when requirements and engineering uncertainties are greatest.

 Demonstrated versatility of PBEAT is suited to NASA’s broad charter (aeronautical
systems, space launch & satellite systems, green energy, etc.).

• Refinement of supplemental formulae (attribute characterization) continues, to better address Turbine
Engine specifics and enforce user-consistency without degrading PBEAT versatility

• Automated linking between improved fidelity Aircraft/Engine design codes and the PBEAT code (via
autodata sheets) continues to reduce estimation time/effort and accelerate cost as a decision criteria.
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